Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.actbio.2011.11.002
DC FieldValue
dc.titleControlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering
dc.contributor.authorSu, Y.
dc.contributor.authorSu, Q.
dc.contributor.authorLiu, W.
dc.contributor.authorLim, M.
dc.contributor.authorVenugopal, J.R.
dc.contributor.authorMo, X.
dc.contributor.authorRamakrishna, S.
dc.contributor.authorAl-Deyab, S.S.
dc.contributor.authorEl-Newehy, M.
dc.date.accessioned2014-04-24T09:32:02Z
dc.date.available2014-04-24T09:32:02Z
dc.date.issued2012-02
dc.identifier.citationSu, Y., Su, Q., Liu, W., Lim, M., Venugopal, J.R., Mo, X., Ramakrishna, S., Al-Deyab, S.S., El-Newehy, M. (2012-02). Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomaterialia 8 (2) : 763-771. ScholarBank@NUS Repository. https://doi.org/10.1016/j.actbio.2011.11.002
dc.identifier.issn17427061
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/51363
dc.description.abstractElectrospun nanofibers mimic the native extracellular matrix of bone and have generated considerable interest in bone tissue regeneration. The aim of this study was to fabricate novel poly(l-lactide-co-caprolactone) (PLLACL), PLLACL/collagen nanofibers blended with bone morphogenetic protein 2 (BMP2) and dexamethasone (DEX) for controlled release during bone tissue engineering (BTE). The morphology, surface hydrophilicity, and mechanical properties of the PLLACL/collagen nanofibrous mats were analyzed by scanning electron microscopy and water contact angle and mechanical stability determination. The performance of the scaffolds was investigated in terms of the viability and morphology of human mesenchymal stromal cells (hMSC) on the nanofibrous mats. BMP2 and DEX were successfully incorporated into PLLACL/collagen nanofibers by means of blending or coaxial electrospinning and the PLLACL/collagen blended fibers proved useful for hMSC culture. Release of the two growth factors from PLLACL/collagen nanofibrous mats in vitro was investigated by UV spectrophotometry. The release profiles for core-shell nanofibers showed more controlled release of the growth factors compared with the blended electrospun fibers. The experimental results show that controlled release of BMP2 and DEX can induce hMSC to differentiate into osteogenic cells for bone tissue engineering. The results imply that PLLACL/collagen nanofibers encapsulating two drugs and/or proteins have great potential in bone tissue engineering. Crown Copyright © 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.actbio.2011.11.002
dc.sourceScopus
dc.subjectBone morphogenetic protein 2
dc.subjectCoaxial electrospinning
dc.subjectControlled release
dc.subjectDexamethasone
dc.subjectNanofibers
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.description.doi10.1016/j.actbio.2011.11.002
dc.description.sourcetitleActa Biomaterialia
dc.description.volume8
dc.description.issue2
dc.description.page763-771
dc.identifier.isiut000301081400032
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.