Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.orl.2007.08.005
Title: The SC1 property of the squared norm of the SOC Fischer-Burmeister function
Authors: Chen, J.-S.
Sun, D. 
Sun, J. 
Keywords: Lipschitz continuity
Merit function
Second-order cone
Semismoothness
Spectral factorization
Issue Date: 2008
Citation: Chen, J.-S., Sun, D., Sun, J. (2008). The SC1 property of the squared norm of the SOC Fischer-Burmeister function. Operations Research Letters 36 (3) : 385-392. ScholarBank@NUS Repository. https://doi.org/10.1016/j.orl.2007.08.005
Abstract: We show that the gradient mapping of the squared norm of Fischer-Burmeister function is globally Lipschitz continuous and semismooth, which provides a theoretical basis for solving nonlinear second-order cone complementarity problems via the conjugate gradient method and the semismooth Newton's method. © 2008 Elsevier Ltd. All rights reserved.
Source Title: Operations Research Letters
URI: http://scholarbank.nus.edu.sg/handle/10635/44189
ISSN: 01676377
DOI: 10.1016/j.orl.2007.08.005
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

18
checked on Aug 16, 2018

WEB OF SCIENCETM
Citations

15
checked on Jul 31, 2018

Page view(s)

55
checked on Aug 3, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.