Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-13089-2_27
Title: Learnability of automatic classes
Authors: Jain, S. 
Luo, Q.
Stephan, F. 
Issue Date: 2010
Source: Jain, S., Luo, Q., Stephan, F. (2010). Learnability of automatic classes. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6031 LNCS : 321-332. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-13089-2_27
Abstract: The present work initiates the study of the learnability of automatic indexable classes which are classes of regular languages of a certain form. Angluin's tell-tale condition characterizes when these classes are explanatorily learnable. Therefore, the more interesting question is when learnability holds for learners with complexity bounds, formulated in the automata-theoretic setting. The learners in question work iteratively, in some cases with an additional long-term memory, where the update function of the learner mapping old hypothesis, old memory and current datum to new hypothesis and new memory is automatic. Furthermore, the dependence of the learnability on the indexing is also investigated. This work brings together the fields of inductive inference and automatic structures. © 2010 Springer-Verlag Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/43223
ISBN: 3642130887
ISSN: 03029743
DOI: 10.1007/978-3-642-13089-2_27
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

11
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

9
checked on Nov 18, 2017

Page view(s)

61
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.