Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/42622
Title: A comparative study of centroid-based, neighborhood-based and statistical approaches for effective document categorization
Authors: Tam, V.
Santoso, A.
Setiono, R. 
Issue Date: 2002
Source: Tam, V.,Santoso, A.,Setiono, R. (2002). A comparative study of centroid-based, neighborhood-based and statistical approaches for effective document categorization. Proceedings - International Conference on Pattern Recognition 16 (4) : 235-238. ScholarBank@NUS Repository.
Abstract: Associating documents to relevant categories is critical for effective document retrieval. Here, we compare the well-known k-Nearest Neighborhood (kNN) algorithm, the centroid-based classifier and the Highest Average Similarity over Retrieved Documents (HASRD) algorithm, for effective document categorization. We use various measures such as the micro and macro F1 values to evaluate their performance on the Reuters-21578 corpus. The empirical results show that kNN performs the best, followed by our adapted HASRD and the centroid-based classifier for common document categories, while the centroid-based classifier and kNN outperform our adapted HASRD for rare document categories. Additionally, our study clearly indicates that each classifier performs optimally only when a suitable term weighting scheme is used. All these significant results lead to many exciting directions for future exploration. © 2002 IEEE.
Source Title: Proceedings - International Conference on Pattern Recognition
URI: http://scholarbank.nus.edu.sg/handle/10635/42622
ISSN: 10514651
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

622
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.