Please use this identifier to cite or link to this item: https://doi.org/10.1142/S0129065711002821
Title: Rule extraction from minimal neural networks for credit card screening
Authors: Setiono, R. 
Baesens, B.
Mues, C.
Keywords: credit scoring
Pruning
rule extraction
Issue Date: 2011
Source: Setiono, R., Baesens, B., Mues, C. (2011). Rule extraction from minimal neural networks for credit card screening. International Journal of Neural Systems 21 (4) : 265-276. ScholarBank@NUS Repository. https://doi.org/10.1142/S0129065711002821
Abstract: While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting. © 2011 World Scientific Publishing Company.
Source Title: International Journal of Neural Systems
URI: http://scholarbank.nus.edu.sg/handle/10635/42523
ISSN: 01290657
DOI: 10.1142/S0129065711002821
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

25
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

19
checked on Nov 16, 2017

Page view(s)

70
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.