Please use this identifier to cite or link to this item: https://doi.org/10.1109/SSDBM.2007.20
Title: On efficient processing of subspace skyline queries on high dimensional data
Authors: Jin, W.
Tung, A.K.H. 
Ester, M.
Han, J.
Issue Date: 2007
Source: Jin, W.,Tung, A.K.H.,Ester, M.,Han, J. (2007). On efficient processing of subspace skyline queries on high dimensional data. Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM. ScholarBank@NUS Repository. https://doi.org/10.1109/SSDBM.2007.20
Abstract: Recent studies on efficiently answering subspace skyline queries can be separated into two approaches. The first focused on pre-materializing a set of skylines points in various subspaces while the second focus on dynamically answering the queries by using a set of anchors to prune off skyline points through spatial reasoning. Despite effort to compress the pre-materialized subspace skylines through removal of redundancy, the storage space for the first approach remain exponential in the number of dimensions. The query time for the second approach on the other hand also grow substantially for data with higher dimensionality where the pruning power of anchors become much weaker. In this paper, we propose methods for answering subspace skyline query on high dimensional data such that both prematerialization storage and query time can be moderated. We propose novel notions of maximal partial-dominating space, maximal partial-dominated space and the maximal equality space between pairs of skyline objects in the full space and use these concepts as the foundation for answering subspace skyline queries for high dimensional data. Query processing involves mostly simple pruning operations while skyline computation is done only on a small subset of candidate skyline points in the subspace. We also develop a random sampling method to compute the subspace skyline in an on-line fashion. Extensive experiments have been conducted and demonstrated the efficiency and effectiveness of our methods. © 2007 IEEE.
Source Title: Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM
URI: http://scholarbank.nus.edu.sg/handle/10635/42171
ISBN: 0769528686
ISSN: 10993371
DOI: 10.1109/SSDBM.2007.20
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

20
checked on Dec 5, 2017

Page view(s)

51
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.