Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICBPE.2006.348607
Title: Computational models for identifying promiscuous HLA-B7 binders based on information theory and support vector machine
Authors: Zhang, G.L.
Tong, J.C.
Zhang, Z.H.
Zheng, Y. 
August, J.T.
Kwoh, C.K.
Brusic, V.
Keywords: Binding peptide
HLA-B7
Information thoery
Support vector machine
Vaccinology
Issue Date: 2006
Source: Zhang, G.L.,Tong, J.C.,Zhang, Z.H.,Zheng, Y.,August, J.T.,Kwoh, C.K.,Brusic, V. (2006). Computational models for identifying promiscuous HLA-B7 binders based on information theory and support vector machine. ICBPE 2006 - Proceedings of the 2006 International Conference on Biomedical and Pharmaceutical Engineering : 319-323. ScholarBank@NUS Repository. https://doi.org/10.1109/ICBPE.2006.348607
Abstract: Computational vaccinology is a developing discipline. To become a standard component in vaccine development, it requires accurate and broadly applicable models of wet-lab experiments. We developed prediction models based on a novel data representation of peptide/MHC interaction and support vector machines (SVM) for prediction of peptides that promiscuously bind to multiple Human Leukocyte Antigen (HLA) alleles belonging to HLA-B7 supertype. 10-fold cross-validation results showed that the area under the receiver operating curve (Aroc) of SVM models is above 0.90. Blind testing results showed that the average Aroc of SVM models is 0.84. A learning approach based on information theory, termed Information Learning Approach, was used for feature selection. Several amino acid positions with high information content have been identified in input 9mer peptides and HLA alleles and were used as input features to SVM. They are position 1, 2, 4, 5, 7, 8, 9 in 9mer peptides and position 45 and 97 in HLA-B7 molecules. Prediction accuracy was improved after feature selection. These positions cover the anchor positions of HLA-B7 alleles, which have important biological roles for successful biding of relevant peptides. © 2006 Research Publishing Services.
Source Title: ICBPE 2006 - Proceedings of the 2006 International Conference on Biomedical and Pharmaceutical Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/42126
ISBN: 8190426249
DOI: 10.1109/ICBPE.2006.348607
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

59
checked on Jan 14, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.