Please use this identifier to cite or link to this item:
Title: Automatic image annotation via local multi-label classification
Authors: Wang, M.
Zhou, X.
Chua, T.-S. 
Keywords: Automatic image annotation
Maximum margin clustering
Multi-label classification
Issue Date: 2008
Citation: Wang, M.,Zhou, X.,Chua, T.-S. (2008). Automatic image annotation via local multi-label classification. CIVR 2008 - Proceedings of the International Conference on Content-based Image and Video Retrieval : 17-26. ScholarBank@NUS Repository.
Abstract: As the consequence of semantic gap, visual similarity does not guarantee semantic similarity, which in general is conflicting with the inherent assumption of many generativebased image annotation methods. While discriminative learning approach had often been used to classify images into different semantic classes, its efficiency is often impaired by the problems of multi-labeling and large scale concept space typically encountered in practical image annotation tasks. In this paper, we explore solutions to the problems of large scale concept space learning and mismatch between semantic and visual space. To tackle the first problem, we explore the use of higher level semantic space with lower dimension by clustering correlated keywords into topics in the local neighborhood. The topics are used as lexis for assigning multiple labels for unlabeled images. To tackle the problem of semantic gap, we aim to reduce the bias between visual and semantic spaces by finding optimal margins in both spaces. In particular, we propose an iterative solution by alternately maximizing the sum of the margins to reduce the gap between visual similarity and semantic similarity. The experimental results on the ECCV2002 benchmark show that our method outperforms the state-of-the-art generativebased annotation method MBRM and discriminative-based ASVM-MIL by 9% and 11% in terms of F1 measure respectively. Copyright 2008 ACM.
Source Title: CIVR 2008 - Proceedings of the International Conference on Content-based Image and Video Retrieval
ISBN: 9781605580708
DOI: 10.1145/1386352.1386359
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 20, 2019

Page view(s)

checked on Jan 26, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.