Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/41507
Title: Estimating class priors in domain adaptation forword sense disambiguation
Authors: Chan, Y.S. 
Ng, H.T. 
Issue Date: 2006
Source: Chan, Y.S.,Ng, H.T. (2006). Estimating class priors in domain adaptation forword sense disambiguation. COLING/ACL 2006 - 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference 1 : 89-96. ScholarBank@NUS Repository.
Abstract: Instances of a word drawn from different domains may have different sense priors (the proportions of the different senses of a word). This in turn affects the accuracy of word sense disambiguation (WSD) systems trained and applied on different domains. This paper presents a method to estimate the sense priors of words drawn from a new domain, and highlights the importance of using well calibrated probabilities when performing these estimations. By using well calibrated probabilities, we are able to estimate the sense priors effectively to achieve significant improvements in WSD accuracy. © 2006 Association for Computational Linguistics.
Source Title: COLING/ACL 2006 - 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/41507
ISBN: 1932432655
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

38
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.