Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-02713-0_61
Title: Partially observable markov decision process (POMDP) technologies for sign language based human-computer interaction
Authors: Ong, S.C.W. 
Hsu, D. 
Lee, W.S. 
Kurniawati, H. 
Keywords: Human-computer interaction
Planning under uncertainty
Sign language recognition
Issue Date: 2009
Source: Ong, S.C.W.,Hsu, D.,Lee, W.S.,Kurniawati, H. (2009). Partially observable markov decision process (POMDP) technologies for sign language based human-computer interaction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5616 LNCS (PART 3) : 577-586. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-02713-0_61
Abstract: Sign language (SL) recognition modules in human-computer interaction systems need to be both fast and reliable. In cases where multiple sets of features are extracted from the SL data, the recognition system can speed up processing by taking only a subset of extracted features as its input. However, this should not be realised at the expense of a drop in recognition accuracy. By training different recognizers for different subsets of features, we can formulate the problem as the task of planning the sequence of recognizer actions to apply to SL data, while accounting for the trade-off between recognition speed and accuracy. Partially observable Markov decision processes (POMDPs) provide a principled mathematical framework for such planning problems. A POMDP explicitly models the probabilities of observing various outputs from the individual recognizers and thus maintains a probability distribution (or belief) over the set of possible SL input sentences. It then computes a policy that maps every belief to an action. This allows the system to select actions in real-time during online policy execution, adapting its behaviour according to the observations encountered. We illustrate the POMDP approach with a simple sentence recognition problem and show in experiments the advantages of this approach over "fixed action" systems that do not adapt their behaviour in real-time. © 2009 Springer Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/40980
ISBN: 3642027121
ISSN: 03029743
DOI: 10.1007/978-3-642-02713-0_61
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

71
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.