Please use this identifier to cite or link to this item:
Title: Motion planning under uncertainty for robotic tasks with long time horizons
Authors: Kurniawati, H.
Du, Y.
Hsu, D. 
Lee, W.S. 
Keywords: Motion planning under uncertainty
robot motion planning
Issue Date: 2011
Citation: Kurniawati, H., Du, Y., Hsu, D., Lee, W.S. (2011). Motion planning under uncertainty for robotic tasks with long time horizons. International Journal of Robotics Research 30 (3) : 308-323. ScholarBank@NUS Repository.
Abstract: Motion planning with imperfect state information is a crucial capability for autonomous robots to operate reliably in uncertain and dynamic environments. Partially observable Markov decision processes (POMDPs) provide a principled general framework for planning under uncertainty. Using probabilistic sampling, point-based POMDP solvers have drastically improved the speed of POMDP planning, enabling us to handle moderately complex robotic tasks. However, robot motion planning tasks with long time horizons remains a severe obstacle for even the fastest point-based POMDP solvers today. This paper proposes Milestone Guided Sampling (MiGS), a new point-based POMDP solver, which exploits state space information to reduce effective planning horizons. MiGS samples a set of points, called milestones, from a robot's state space and constructs a simplified representation of the state space from the sampled milestones. It then uses this representation of the state space to guide sampling in the belief space and tries to capture the essential features of the belief space with a small number of sampled points. Preliminary results are very promising. We tested MiGS in simulation on several difficult POMDPs that model distinct robotic tasks with long time horizons in both 2-D and 3-D environments. These POMDPs are impossible to solve with the fastest point-based solvers today, but MiGS solved them in a few minutes. © The Author(s) 2011.
Source Title: International Journal of Robotics Research
ISSN: 02783649
DOI: 10.1177/0278364910386986
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Oct 16, 2018


checked on Oct 8, 2018

Page view(s)

checked on Sep 29, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.