Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICTAI.2007.96
Title: Finding orientation-sensitive patterns in snapshot databases
Authors: Zhang, M. 
Hsu, W. 
Mong, L.L. 
Issue Date: 2007
Source: Zhang, M., Hsu, W., Mong, L.L. (2007). Finding orientation-sensitive patterns in snapshot databases. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 2 : 171-178. ScholarBank@NUS Repository. https://doi.org/10.1109/ICTAI.2007.96
Abstract: Snapshot data have become ubiquitous, e.g., maps, images and videos. By extracting interesting features from snapshot data and analyzing their relative orientations and proximities, we can discover important structure configuration information among groups of features in a snapshot database. In this paper, we introduce a class of pattern called orientation-sensitive patterns, which occur in many applications ranging from weather study, sport game analysis to medical image processing. We examine three approaches to discover orientation-sensitive patterns. We show that the first apriori-based approach is expensive while the second enumeration-based approach is memory intensive. The third approach decomposes an orientation-sensitive pattern into an H-List and a V-List, which greatly simplifies the mining process. Extensive experiment studies show that the third method is more efficient and scalable than the apriori and enumeration algorithms. We also present case studies on soccer game snapshots to demonstrate the interesting patterns discovered. © 2007 IEEE.
Source Title: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI
URI: http://scholarbank.nus.edu.sg/handle/10635/40922
ISBN: 076953015X
ISSN: 10823409
DOI: 10.1109/ICTAI.2007.96
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

1
checked on Dec 6, 2017

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2017

Page view(s)

49
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.