Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/40811
Title: On the data consumption benefits of accepting increased uncertainty
Authors: Martin, E.
Sharma, A.
Stephan, F. 
Keywords: Frugal learning
Iterative learning
Long term memory
Mind changes
Issue Date: 2004
Source: Martin, E.,Sharma, A.,Stephan, F. (2004). On the data consumption benefits of accepting increased uncertainty. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) 3244 : 83-98. ScholarBank@NUS Repository.
Abstract: In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty, and interpret 'desirable' as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds - for hypotheses and for data - is a key distinctive feature of our approach. We show that situations exists where the more mind changes the learner is willing to accept, the lesser the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability. © Springer-Verlag Berlin Heidelberg 2004.
Source Title: Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
URI: http://scholarbank.nus.edu.sg/handle/10635/40811
ISSN: 03029743
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

49
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.