Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/40745
Title: Bayesian online classifiers for text classification and filtering
Authors: Chai, K.M.A.
Ng, H.T. 
Chieu, H.L.
Keywords: Bayesian
Machine learning
Online
Text classification
Text filtering
Issue Date: 2002
Source: Chai, K.M.A.,Ng, H.T.,Chieu, H.L. (2002). Bayesian online classifiers for text classification and filtering. SIGIR Forum (ACM Special Interest Group on Information Retrieval) : 97-104. ScholarBank@NUS Repository.
Abstract: This paper explores the use of Bayesian online classifiers to classify text documents. Empirical results indicate that these classifiers are comparable with the best text classification systems. Furthermore, the online approach offers the advantage of continuous learning in the batch-adaptive text filtering task.
Source Title: SIGIR Forum (ACM Special Interest Group on Information Retrieval)
URI: http://scholarbank.nus.edu.sg/handle/10635/40745
ISSN: 01635840
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

54
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.