Please use this identifier to cite or link to this item: https://doi.org/10.1021/pr200698c
Title: Proteomics signature profiling (PSP): A novel contextualization approach for cancer proteomics
Authors: Goh, W.W.B.
Lee, Y.H.
Ramdzan, Z.M.
Sergot, M.J.
Chung, M.
Wong, L. 
Keywords: bioinformatics
HCC (hepatocellular carcinoma)
liver cancer
protein networks
proteomics
systems biology
Issue Date: 2012
Citation: Goh, W.W.B., Lee, Y.H., Ramdzan, Z.M., Sergot, M.J., Chung, M., Wong, L. (2012). Proteomics signature profiling (PSP): A novel contextualization approach for cancer proteomics. Journal of Proteome Research 11 (3) : 1571-1581. ScholarBank@NUS Repository. https://doi.org/10.1021/pr200698c
Abstract: Traditional proteomics analysis is plagued by the use of arbitrary thresholds resulting in large loss of information. We propose here a novel method in proteomics that utilizes all detected proteins. We demonstrate its efficacy in a proteomics screen of 5 and 7 liver cancer patients in the moderate and late stage, respectively. Utilizing biological complexes as a cluster vector, and augmenting it with submodules obtained from partitioning an integrated and cleaned protein-protein interaction network, we calculate a Proteomics Signature Profile (PSP) for each patient based on the hit rates of their reported proteins, in the absence of fold change thresholds, against the cluster vector. Using this, we demonstrated that moderate- and late-stage patients segregate with high confidence. We also discovered a moderate-stage patient who displayed a proteomics profile similar to other poor-stage patients. We identified significant clusters using a modified version of the SNet approach. Comparing our results against the Proteomics Expansion Pipeline (PEP) on which the same patient data was analyzed, we found good correlation. Building on this finding, we report significantly more clusters (176 clusters here compared to 70 in PEP), demonstrating the sensitivity of this approach. Gene Ontology (GO) terms analysis also reveals that the significant clusters are functionally congruent with the liver cancer phenotype. PSP is a powerful and sensitive method for analyzing proteomics profiles even when sample sizes are small. It does not rely on the ratio scores but, rather, whether a protein is detected or not. Although consistency of individual proteins between patients is low, we found the reported proteins tend to hit clusters in a meaningful and informative manner. By extracting this information in the form of a Proteomics Signature Profile, we confirm that this information is conserved and can be used for (1) clustering of patient samples, (2) identification of significant clusters based on real biological complexes, and (3) overcoming consistency and coverage issues prevalent in proteomics data sets. © 2012 American Chemical Society.
Source Title: Journal of Proteome Research
URI: http://scholarbank.nus.edu.sg/handle/10635/40601
ISSN: 15353893
DOI: 10.1021/pr200698c
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

29
checked on Oct 9, 2018

WEB OF SCIENCETM
Citations

24
checked on Oct 9, 2018

Page view(s)

55
checked on Oct 6, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.