Please use this identifier to cite or link to this item: https://doi.org/10.1145/2332432.2332468
Title: Aggregation in dynamic networks
Authors: Cornejo, A.
Gilbert, S. 
Newport, C.
Keywords: aggregation
dynamic graphs
Issue Date: 2012
Source: Cornejo, A.,Gilbert, S.,Newport, C. (2012). Aggregation in dynamic networks. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing : 195-203. ScholarBank@NUS Repository. https://doi.org/10.1145/2332432.2332468
Abstract: The aggregation problem assumes that every process starts an execution with a unique token (an abstraction for data). The goal is to collect these tokens at a minimum number of processes by the end of the execution. This problem is particularly relevant to mobile networks where peer-to-peer communication is cheap (e.g., using 802.11 or Bluetooth), but uploading data to a central server can be costly (e.g., using 3G/4G). With this in mind, we study this problem in a dynamic network model, in which the communication graph can change arbitrarily from round to round. We start by exploring global bounds. First we prove a negative result that shows that in general dynamic graphs no algorithm can achieve any measure of competitiveness against the optimal offline algorithm. Guided by this impossibility result, we focus our attention to dynamic graphs where every node interacts, at some point in the execution, with at least a p-fraction of the total number of nodes in the graph. We call these graphs p-clusters. We describe a distributed algorithm that in p-clusters aggregates the tokens to O(log n) processes with high probability. We then turn our attention to local bounds. Specifically we ask whether its possible to aggregate to O(log n) processes in parts of the graph that locally form a p-cluster. Here we prove a negative result: this is only possible if the local p-clusters are sufficiently isolated from the rest of the graph. We then match this result with an algorithm that achieves the desired aggregation given (close to) the minimal required p-cluster isolation. Together, these results imply a "paradox of connectivity": in some graphs, increasing connectivity can lead to inherently worse aggregation performance. We conclude by considering what seems to be a promising performance metric to circumvent our lower bounds for local aggregation algorithms. However, perhaps surprisingly, we show that no aggregation algorithm can perform well with respect to this metric, even in very well connected and very well isolated clusters. © 2012 ACM.
Source Title: Proceedings of the Annual ACM Symposium on Principles of Distributed Computing
URI: http://scholarbank.nus.edu.sg/handle/10635/40527
ISBN: 9781450314503
DOI: 10.1145/2332432.2332468
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

13
checked on Dec 11, 2017

Page view(s)

43
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.