Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/40249
Title: Adaptive binning and dissimilarity measure for image retrieval and classification
Authors: Leow, W.K. 
Li, R. 
Issue Date: 2001
Source: Leow, W.K.,Li, R. (2001). Adaptive binning and dissimilarity measure for image retrieval and classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2 : II234-II239. ScholarBank@NUS Repository.
Abstract: Color histogram is an important part of content-based image retrieval systems. It is a common understanding that histograms that adapt to images can represent their color distributions more efficiently than histograms with fixed binnings. However, among existing dissimilarity measures, only the Earth Mover's Distance can compare histograms with different binnings. This paper presents a detailed quantitative study of fixed and adaptive binnings and the corresponding dissimilarity measures. An efficient dissimilarity measure is proposed for comparing histograms with different binnings. Extensive test results show that adaptive binning and dissimilarity produce the best overall performance, in terms of good accuracy, small number of bins, no empty bin, and efficient computation, compared to existing fixed binning schemes and dissimilarity measures.
Source Title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
URI: http://scholarbank.nus.edu.sg/handle/10635/40249
ISSN: 10636919
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

42
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.