Please use this identifier to cite or link to this item:
Title: Combination of document image binarization techniques
Authors: Su, B.
Lu, S.
Tan, C.L. 
Keywords: document image binarization
pixel classification
thresholding technique combination
Issue Date: 2011
Citation: Su, B., Lu, S., Tan, C.L. (2011). Combination of document image binarization techniques. Proceedings of the International Conference on Document Analysis and Recognition, ICDAR : 22-26. ScholarBank@NUS Repository.
Abstract: Document image binarization has been studied for decades, and many practical binarization techniques have been proposed for different kinds of document images. However, many state-of-the-art methods are particularly suitable for the document images that suffer from certain specific type of image degradation or have certain specific type of image characteristics. In this paper, we propose a classification framework to combine different thresholding methods and produce better performance for document image binarization. Given the binarization results of some reported methods, the proposed framework divides the document image pixels into three sets, namely, foreground pixels, background pixels and uncertain pixels. A classifier is then applied to iteratively classify those uncertain pixels into foreground and background, based on the pre-selected froeground and background sets. Extensive experiments over different datasets including the Document Image Binarization Contest(DIBCO)2009 and Handwritten Document Image Binarization Competition(H-DIBCO)2010 show that our proposed framework outperforms most state-of-the-art methods significantly. © 2011 IEEE.
Source Title: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR
ISBN: 9780769545202
ISSN: 15205363
DOI: 10.1109/ICDAR.2011.14
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 20, 2019


checked on Jan 1, 2019

Page view(s)

checked on Dec 29, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.