Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/40085
Title: Top-down approaches to abstract medical time series using linear segments
Authors: Sarkar, M. 
Leong, T.-Y. 
Keywords: Abstraction
Approximation
ICU and medicine
Segmentation
Time series
Issue Date: 2001
Source: Sarkar, M.,Leong, T.-Y. (2001). Top-down approaches to abstract medical time series using linear segments. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 2 : 765-770. ScholarBank@NUS Repository.
Abstract: This work attempts to abstract medical time series using a minimum number of linear segments such that the integral square error between the abstraction and the data is minimum. The problem is difficult since it involves a multiobjective optimization procedure, and the optimization process is affected by the presence of local minima, noise and outliers. This work proposes a greedy approach, which exploits the local and global information for the optimization. Initially, the number of linear segments needed is estimated roughly by detecting the number of cycles in the data set. Then the tendency of each data point to form bends is measured locally in terms of typicality values. A global consensus in terms of clustering is used to select the breakpoints from all the data points with various typicality values. These breakpoints are utilized to partition the data set. Approximating each partition with a linear segment subsequently forms a crude abstraction. The difference between the original data set and the crude abstraction is exploited as the feedback information such that the crude abstraction can be split further for refinement. The efficacy of the proposed method is demonstrated on some real life intensive care unit (ICU) data sets.
Source Title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
URI: http://scholarbank.nus.edu.sg/handle/10635/40085
ISSN: 08843627
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

37
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.