Please use this identifier to cite or link to this item: https://doi.org/10.1145/1671948.1671949
Title: Particle swarm optimizer with adaptive tabu and mutation: A unified framework for efficient mutation operators
Authors: Wang, Y.-X.
Xiang, Q.-L. 
Zhao, Z.-D. 
Keywords: Evolutionary algorithm
Global optimization
Mutation operator
Parameter adaptation
Swarm intelligence
Issue Date: 2010
Citation: Wang, Y.-X., Xiang, Q.-L., Zhao, Z.-D. (2010). Particle swarm optimizer with adaptive tabu and mutation: A unified framework for efficient mutation operators. ACM Transactions on Autonomous and Adaptive Systems 5 (1). ScholarBank@NUS Repository. https://doi.org/10.1145/1671948.1671949
Abstract: Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) are widely used to tackle black-box global optimization problems when no prior knowledge is available. In order to increase search diversity and avoid stagnation in local optima, the mutation operator was introduced and has been extensively studied in EAs and SI-based algorithms. However, the performance after introducing mutation can be affected in many aspects and the parameters used to perform mutations are very hard to determine. For the purpose of developing efficient mutation operators, this article proposes a unified tabu and mutation framework with parameter adaptations in the context of the Particle Swarm Optimizer (PSO). The proposed framework is a significant extension of our preliminary work [Wang et al. 2007]. Empirical studies on 25 benchmark functions indicate that under the proposed framework: (1) excellent performance can be achieved even with a small number of mutations; (2) the derived algorithm consistently performs well on diverse types of problems and overall performance even surpasses the state-of-the-art PSO variants and representative mutationbased EAs; and (3) fast convergence rates can be preserved despite the use of a long jump mutation operator (the Cauchy mutation). © 2010 ACM.
Source Title: ACM Transactions on Autonomous and Adaptive Systems
URI: http://scholarbank.nus.edu.sg/handle/10635/39882
ISSN: 15564665
DOI: 10.1145/1671948.1671949
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

15
checked on Oct 10, 2018

WEB OF SCIENCETM
Citations

16
checked on Sep 25, 2018

Page view(s)

99
checked on Sep 29, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.