Please use this identifier to cite or link to this item: https://doi.org/10.1145/2000486.2000488
Title: Video quality for face detection, recognition, and tracking
Authors: Korshunov, P.
Ooi, W.T. 
Keywords: Experimentation
Measurement
Performance
Issue Date: 2011
Source: Korshunov, P., Ooi, W.T. (2011). Video quality for face detection, recognition, and tracking. ACM Transactions on Multimedia Computing, Communications and Applications 7 (3). ScholarBank@NUS Repository. https://doi.org/10.1145/2000486.2000488
Abstract: Many distributed multimedia applications rely on video analysis algorithms for automated video and image processing. Little is known, however, about the minimum video quality required to ensure an accurate performance of these algorithms. In an attempt to understand these requirements, we focus on a set of commonly used face analysis algorithms. Using standard datasets and live videos, we conducted experiments demonstrating that the algorithms show almost no decrease in accuracy until the input video is reduced to a certain critical quality, which amounts to significantly lower bitrate compared to the quality commonly acceptable for human vision. Since computer vision percepts video differently than human vision, existing video quality metrics, designed for human perception, cannot be used to reason about the effects of video quality reduction on accuracy of video analysis algorithms. We therefore investigate two alternate video quality metrics, blockiness and mutual information, and show how they can be used to estimate the critical video qualities for face analysis algorithms. © 2011 ACM.
Source Title: ACM Transactions on Multimedia Computing, Communications and Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/39802
ISSN: 15516857
DOI: 10.1145/2000486.2000488
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

24
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

9
checked on Dec 13, 2017

Page view(s)

54
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.