Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.pmcj.2009.10.004
Title: Object relevance weight pattern mining for activity recognition and segmentation
Authors: Palmes, P.
Pung, H.K. 
Gu, T.
Xue, W.
Chen, S.
Keywords: Activity recognition and segmentation
Knowledge engineering
Relative term weighting
Web mining
Issue Date: 2010
Source: Palmes, P., Pung, H.K., Gu, T., Xue, W., Chen, S. (2010). Object relevance weight pattern mining for activity recognition and segmentation. Pervasive and Mobile Computing 6 (1) : 43-57. ScholarBank@NUS Repository. https://doi.org/10.1016/j.pmcj.2009.10.004
Abstract: Monitoring daily activities of a person has many potential benefits in pervasive computing. These include providing proactive support for the elderly and monitoring anomalous behaviors. A typical approach in existing research on activity detection is to construct sequence-based models of low-level activity features based on the order of object usage. However, these models have poor accuracy, require many parameters to estimate, and demand excessive computational effort. Many other supervised learning approaches have been proposed but they all suffer from poor scalability due to the manual labeling involved in the training process. In this paper, we simplify the activity modeling process by relying on the relevance weights of objects as the basis of activity discrimination rather than on sequence information. For each activity, we mine the web to extract the most relevant objects according to their normalized usage frequency. We develop a KeyExtract algorithm for activity recognition and two algorithms, MaxGap and MaxGain, for activity segmentation with linear time complexities. Simulation results indicate that our proposed algorithms achieve high accuracy in the presence of different noise levels indicating their good potential in real-world deployment. © 2009 Elsevier B.V. All rights reserved.
Source Title: Pervasive and Mobile Computing
URI: http://scholarbank.nus.edu.sg/handle/10635/39385
ISSN: 15741192
DOI: 10.1016/j.pmcj.2009.10.004
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

56
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

44
checked on Dec 13, 2017

Page view(s)

93
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.