Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/39300
Title: Solving hierarchical constraints over finite domains with local search
Authors: Henz, M. 
Yap, R.H.C. 
Lim, Y.F.
Lua, S.C.
Walser, J.P.
Shi, X.P.
Keywords: Airport gate allocation
Finite domain constraints
Hierarchical constraints
Over-constrained problems
Issue Date: 2004
Source: Henz, M.,Yap, R.H.C.,Lim, Y.F.,Lua, S.C.,Walser, J.P.,Shi, X.P. (2004). Solving hierarchical constraints over finite domains with local search. Annals of Mathematics and Artificial Intelligence 40 (3-4) : 283-301. ScholarBank@NUS Repository.
Abstract: Many real world problems have requirements and constraints which conflict with each other. One approach for dealing with such over-constrained problems is with constraint hierarchies. In the constraint hierarchy framework, constraints are classified into ranks, and appropriate solutions are selected using a comparator which takes into account the constraints and their ranks. In this paper, we present a local search solution to solving hierarchical constraint problems over finite domains (HCPs). This is an extension of local search for over-constrained integer programs WSAT(OIP) to constraint hierarchies and general finite domain constraints. The motivation for this work arose from solving large airport gate allocation problems. We show how gate allocation problems can be formulated as HCPs using typical gate allocation constraints. Using the gate allocation benchmarks, we investigate how constraint heirarchy selection strategies and the problem formulation using two models: a 0-1 linear constraint hierarchy model and a nonlinear finite domain constraint hierarchy model.
Source Title: Annals of Mathematics and Artificial Intelligence
URI: http://scholarbank.nus.edu.sg/handle/10635/39300
ISSN: 10122443
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

49
checked on Dec 8, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.