Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0378-1119(03)00619-X
Title: Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867
Authors: Yeo, C.C. 
Wong, M.V.-M. 
Feng, Y.
Song, K.P. 
Poh, C.L. 
Keywords: σ70-type promoter
Gentisate pathway
Operon
Transcript analysis
Issue Date: 2003
Source: Yeo, C.C., Wong, M.V.-M., Feng, Y., Song, K.P., Poh, C.L. (2003). Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867. Gene 312 (1-2) : 239-248. ScholarBank@NUS Repository. https://doi.org/10.1016/S0378-1119(03)00619-X
Abstract: Pseudomonas alcaligenes NCIMB 9867 (strain P25X) produces isofunctional enzymes of the gentisate pathway that enables the degradation of xylenols and cresols via gentisate. Previous reports had indicated that one set of enzymes is constitutively expressed whereas the other set is strictly inducible by aromatic hydrocarbon substrates. The gene encoding gentisate 1,2-dioxygenase (GDO), the enzyme that catalyzes the cleavage of the gentisate aromatic ring, was cloned from strain P25X. The GDO gene, designated xlnE, is 1,044 bp, and is part of a 5.4 kb operon which consists of six genes, xlnEFGHID. Transcription of this operon was driven by a σ70-type promoter, PxlnE, located 123 bp upstream of the xlnE start codon. Primer extension analysis showed that the xlnE transcription start point is located at the -87 adenine residue. In a P25X xlnE knockout mutant, GDO activity could only be detected when cells were grown in the presence of aromatic substrates, suggesting that xlnE encodes for the constitutive copy of GDO. This was verified by constructing a P25X strain with xlnE transcriptionally fused to a promoterless catechol 2,3-dioxygenase gene. In this strain, catechol 2,3-dioxygenase activity was detected in cells that were grown in the absence of aromatic inducers. However, catechol 2,3-dioxygenase activity increased up to four fold when these cells were grown in the presence of aromatic substrates, in particular 3-hydroxybenzoate. Thus, xlnE is in fact, inducible and the constitutive activity observed under non-inducing conditions was due to its relatively high basal levels of expression. © 2003 Elsevier Science B.V. All rights reserved.
Source Title: Gene
URI: http://scholarbank.nus.edu.sg/handle/10635/31104
ISSN: 03781119
DOI: 10.1016/S0378-1119(03)00619-X
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

17
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

16
checked on Nov 22, 2017

Page view(s)

160
checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.