Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.biomaterials.2004.08.017
Title: Optimization of 3-D hepatocyte culture by controlling the physical and chemical properties of the extra-cellular matrices
Authors: Ng, S.
Wu, Y.-N. 
Yu, H. 
Zhou, Y. 
Toh, Y.-E.
Ho, Z.-Z.
Chia, S.-M. 
Zhu, J.-H. 
Mao, H.-Q. 
Keywords: Cell culture
Collagen
Confocal microscopy
ECM (extra-cellular matrix)
Hepatocyte
Issue Date: 2005
Source: Ng, S.,Wu, Y.-N.,Yu, H.,Zhou, Y.,Toh, Y.-E.,Ho, Z.-Z.,Chia, S.-M.,Zhu, J.-H.,Mao, H.-Q. (2005). Optimization of 3-D hepatocyte culture by controlling the physical and chemical properties of the extra-cellular matrices. Biomaterials 26 (16) : 3153-3163. ScholarBank@NUS Repository. https://doi.org/10.1016/j.biomaterials.2004.08.017
Abstract: Hepatocytes are anchorage-dependent cells sensitive to microenvironment; the control of the physicochemical properties of the extra-cellular matrices may be useful to the maintenance of hepatocyte functions in vitro for various applications. In a microcapsule-based 3-D hepatocyte culture microenvironment, we could control the physical properties of the collagen nano-fibres by fine-tuning the complex-coacervation reaction between methylated collagen and terpolymer of hydroxylethyl methacrylate-methyl methacrylate-methylacrylic acid. The physical properties of the nano-fibres were quantitatively characterized using back-scattering confocal microscopy to help optimize the physical support for hepatocyte functions. We further enhanced the chemical properties of the collagen nano-fibres by incorporating galactose onto collagen, which can specifically interact with the asialoglycoprotein receptor on hepatocytes. By correlating a range of collagen nano-fibres of different physicochemical properties with hepatocyte functions, we have identified a specific combination of methylated and galactosylated collagen nano-fibres optimal for maintaining hepatocyte functions in vitro. A model of how the physical and chemical supports interplay to maintain hepatocyte functions is discussed. © 2004 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
URI: http://scholarbank.nus.edu.sg/handle/10635/29734
ISSN: 01429612
DOI: 10.1016/j.biomaterials.2004.08.017
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

38
checked on Dec 13, 2017

WEB OF SCIENCETM
Citations

35
checked on Oct 31, 2017

Page view(s)

176
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.