Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.bone.2009.03.674
Title: The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering
Authors: Ngiam, M.
Liao, S. 
Cheng, Z. 
Chan, C.K. 
Ramakrishna, S. 
Patil, A.J.
Keywords: Bone graft
Bone tissue engineering
Hydroxyapatite
Nanocomposite
Osteoblast
Issue Date: 2009
Source: Ngiam, M., Liao, S., Cheng, Z., Chan, C.K., Ramakrishna, S., Patil, A.J. (2009). The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45 (1) : 4-16. ScholarBank@NUS Repository. https://doi.org/10.1016/j.bone.2009.03.674
Abstract: Bone is a nanocomposite consisting of two main components, nano-hydroxyapatite (n-HA) and Type I collagen (Col). The aim is to exploit the nano-scale functional and material characteristics of natural bone in order to modulate cellular functions for optimal bone repair in bone graft systems. Here, we present an effective and novel technique in obtaining n-HA in cognate with native apatite on electrospun nanofibers within minutes without any pre-treatment. Using an alternate calcium and phosphate (Ca-P) solution dipping method, n-HA was formed on poly(lactide-co-glycolide) acid (PLGA) and blended PLGA/Col nanofibers. The presence of the functional groups of collagen significantly hastened n-HA deposition closed to nine-fold. The quantity of n-HA impinged upon the specific surface area, whereby mineralized PLGA/Col had a greater surface area than non-mineralized PLGA/Col, whereas n-HA did not significantly improve the specific surface area of mineralized PLGA compared to pure PLGA. The novelty of the process was that n-HA on PLGA had a positive modulation on early osteoblast capture (within minutes) compared to pure PLGA. Contrary, cell capture on mineralized PLGA/Col was comparable to pure PLGA/Col. Interestingly, although n-HA impeded proliferation during the culture period (days 1, 4 and 7), the cell functionality such as alkaline phosphatase (ALP) and protein expressions were ameliorated on mineralized nanofibers. The amount of n-HA appeared to have a greater effect on the early stages of osteoblast behavior (cell attachment and proliferation) rather than the immediate/late stages (proliferation and differentiation). © 2009 Elsevier Inc. All rights reserved.
Source Title: Bone
URI: http://scholarbank.nus.edu.sg/handle/10635/25347
ISSN: 87563282
DOI: 10.1016/j.bone.2009.03.674
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

203
checked on Dec 7, 2017

WEB OF SCIENCETM
Citations

174
checked on Nov 29, 2017

Page view(s)

259
checked on Dec 18, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.