Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/24194
Title: Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles
Authors: Idris, N.M.
Li, Z. 
Zhang, Y. 
Ye, L. 
Wei, Sim E.K. 
Mahendran, R. 
Ho, P.C.-L. 
Keywords: Confocal microscopy
Nanoparticle
Stem cell
Transplantation
Issue Date: 2009
Citation: Idris, N.M., Li, Z., Zhang, Y., Ye, L., Wei, Sim E.K., Mahendran, R., Ho, P.C.-L. (2009). Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30 (28) : 5104-5113. ScholarBank@NUS Repository.
Abstract: With the emergence of cell transplant as an attractive treatment modality for various diseases, there is a parallel need to track the fate of these cells to assess their therapeutic effectiveness. Here, we report the use of upconversion fluorescent nanoparticles, silica/NaYF4:Yb,Er, to dynamically track live myoblast cells in vitro and in a living mouse model of cryoinjured hind limb. Nanoparticles loaded into cells were confirmed for its intracellular uptake by confocal imaging, spectrophotometry and inductively coupled plasma analysis. Loaded nanoparticles demonstrated absolute resistance to photobleaching and were applied for dynamic imaging to real time track in vitro cell migratory activity for a continuous 5 h duration using a time-lapse confocal microscope. Direct observation on the direction, speed and cell-cell interaction of migrating cells was clearly visualized. In vivo confocal imaging of nanoparticle-loaded cells intravenously injected into a mouse tail vein showed them flowing in the ear blood vessels. Nanoparticle-loaded cells were also unambiguously identified with superior contrast against a negligible background at least 1300 μm deep in a fully vascularized living tissue upon intramuscular injection. Spatiotemporal migratory activity of the transplanted cells within the three-dimensional living tissue was captured for at least 7 days post-delivery. Direct in vivo visualization of cell dynamics in the native tissue was unobtrusively followed over a 4 h time course and revealed subtle migratory activity of the transplanted cells. With these unique optical properties, we present silica/NaYF4:Yb,Er nanoparticles as a new fluorescent live cell tracker probe for superior in vitro and in vivo dynamic imaging. © 2009 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
URI: http://scholarbank.nus.edu.sg/handle/10635/24194
ISSN: 01429612
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

194
checked on Feb 28, 2018

WEB OF SCIENCETM
Citations

185
checked on May 7, 2018

Page view(s)

206
checked on Nov 10, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.