Please use this identifier to cite or link to this item: https://doi.org/10.3390/membranes5040722
Title: Hollow fiber membrane dehumidification device for air conditioning system
Authors: Zhao, B 
Peng, N 
Liang, C 
Yong, W.F 
Chung, T.-S 
Keywords: Air conditioning
Contamination
Driers (materials)
Energy conservation
Energy utilization
Humidity control
Molecules
Water vapor
Cross contamination problem
Dehumidification technologies
Hollow fiber
Hollow fiber membrane modules
Hollow fiber membranes
Module fabrication
Solution-diffusion mechanisms
Water vapor concentration
Membranes
Issue Date: 2015
Citation: Zhao, B, Peng, N, Liang, C, Yong, W.F, Chung, T.-S (2015). Hollow fiber membrane dehumidification device for air conditioning system. Membranes 5 (4) : 722-738. ScholarBank@NUS Repository. https://doi.org/10.3390/membranes5040722
Abstract: In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. © 2015 by the authors; licensee MDPI, Basel, Switzerland.
Source Title: Membranes
URI: https://scholarbank.nus.edu.sg/handle/10635/175976
ISSN: 2077-0375
DOI: 10.3390/membranes5040722
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_3390_membranes5040722.pdf1.08 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.