Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/16685
Title: Regression Spline via Penalizing Derivatives.
Authors: ZHU YEYING
Keywords: Regression Splines, Truncated Power Basis, SCAD, Derivatives, Sparse, Re-parameterize
Issue Date: 7-Jan-2009
Source: ZHU YEYING (2009-01-07). Regression Spline via Penalizing Derivatives.. ScholarBank@NUS Repository.
Abstract: Regression spline based on a truncated power basis has been proved to be a very useful nonparametric method for fitting a data set generated from the nonparametric regression model, where the underlying function m(t) is unknown. In some situations when the coefficient vector is large dimensional and the pth times derivatives of the regression function are sparse, we attempt to re-parameterize the coefficient vector as a linear function of certain derivative vector, whose last K + 1 components are the pth times derivatives of the regression spline function. Then, the smoothly clipped absolute deviation (SCAD) method of Fan and Li (2001) can be adopted to select and estimate the non-zero components of the transformed coefficients simultaneously. The proposed method is shown to be more efficient than estimating the coefficients by SCAD method directly, especially when the true curve is piecewise with different orders of polynomials at different segments.
URI: http://scholarbank.nus.edu.sg/handle/10635/16685
Appears in Collections:Master's Theses (Open)

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
ZhuYY.pdf1.79 MBAdobe PDF

OPEN

NoneView/Download

Page view(s)

298
checked on Dec 11, 2017

Download(s)

180
checked on Dec 11, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.