Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICME.2015.7177449
Title: A framework of extracting multi-scale features using multiple convolutional neural networks
Authors: Peng K.-C.
Chen T. 
Keywords: Convolutional neural networks
label-inheritable
multiscale
Issue Date: 2015
Publisher: IEEE Computer Society
Citation: Peng K.-C., Chen T. (2015). A framework of extracting multi-scale features using multiple convolutional neural networks. Proceedings - IEEE International Conference on Multimedia and Expo 2015-August : 7177449. ScholarBank@NUS Repository. https://doi.org/10.1109/ICME.2015.7177449
Abstract: Most works related to convolutional neural networks (CNN) use the traditional CNN framework which extracts features in only one scale. We propose multi-scale convolutional neural networks (MSCNN) which can not only extract multi-scale features but also solve the issues of the previous methods which use CNN to extract multi-scale features. With the assumption of label-inheritable (LI) property, we also propose a method to generate exponentially more training examples for MSCNN from the given training set. Our experimental results show that MSCNN outperforms both the state-of-the-art methods and the traditional CNN framework on artist, artistic style, and architectural style classification, supporting that MSCNN outperforms the traditional CNN framework on the tasks which at least partially satisfy LI property.
Source Title: Proceedings - IEEE International Conference on Multimedia and Expo
URI: http://scholarbank.nus.edu.sg/handle/10635/146079
ISBN: 9781479970827
ISSN: 19457871
DOI: 10.1109/ICME.2015.7177449
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

12
checked on Sep 16, 2018

Page view(s)

15
checked on Sep 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.