Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/139713
DC FieldValue
dc.titleAUTOMATED DIAGNOSIS OF ACUTE APPENDICITIS BASED ON CLINICAL NOTES
dc.contributor.authorSTEVEN KESTER YUWONO
dc.date.accessioned2018-03-31T18:00:29Z
dc.date.available2018-03-31T18:00:29Z
dc.date.issued2018-01-24
dc.identifier.citationSTEVEN KESTER YUWONO (2018-01-24). AUTOMATED DIAGNOSIS OF ACUTE APPENDICITIS BASED ON CLINICAL NOTES. ScholarBank@NUS Repository.
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/139713
dc.description.abstractMedical diagnosis is a very important task which requires high accuracy and efficiency, especially for patients admitted to the accident and emergency (A&E) department. It is extremely challenging for the attending doctors to perform quick and accurate diagnosis. Most of the relevant and useful information are in the form of free text notes entered by medical doctors. The objective of this thesis is to develop a system to aid in the diagnosis of appendicitis during A&E admissions by giving diagnosis recommendations to doctors. We have developed a novel neural network model that is able to learn from free texts and additional real-valued features without any feature engineering. The performance of our model is close to that of emergency department (ED) doctors. Visualization shows that the model is able to meaningfully learn important features, signs, and symptoms of patients from unstructured free-text ED notes, which helps doctors to make better diagnosis.
dc.language.isoen
dc.subjectmachine learning, neural network, natural language processing, appendicitis, diagnosis, emergency department
dc.typeThesis
dc.contributor.departmentCOMPUTER SCIENCE
dc.contributor.supervisorNG HWEE TOU
dc.description.degreeMaster's
dc.description.degreeconferredMASTER OF SCIENCE
dc.identifier.orcid0000-0001-5632-6681
Appears in Collections:Master's Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
YuwonoSK.pdf773.04 kBAdobe PDF

OPEN

NoneView/Download

Page view(s)

179
checked on Jan 17, 2019

Download(s)

158
checked on Jan 17, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.