Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/138654
Title: CONTEXT-AWARE FUSION FOR MULTI-MODAL BIOMETRICS: WHOM DO I LISTEN TO AND WHEN?
Authors: SIVASANKARAN DIVYA
ORCID iD:   orcid.org/0000-0003-1556-7862
Keywords: context aware, online learning, multimodal biometrics, continuous authentication, fusion
Issue Date: 18-Aug-2017
Citation: SIVASANKARAN DIVYA (2017-08-18). CONTEXT-AWARE FUSION FOR MULTI-MODAL BIOMETRICS: WHOM DO I LISTEN TO AND WHEN?. ScholarBank@NUS Repository.
Abstract: Continuous Authentication using biometrics is receiving renewed attention owing to recent advances in mobile technology. The context in which biometric inputs are acquired can affect the quality of information available for authentication. However, existing fusion methods do not take contextual information into account while combining the decisions of individual classifiers. The fundamental research question in this thesis is to effectively learn to combine decisions of multiple experts by utilizing contextual information to improve the accuracy of the authentication system. Two methods have been proposed to utilize contextual information available during the acquisition of biometric inputs and can operate at both decision and score levels of fusion. The theoretical bounds on the proposed methods are presented along with experiments on real and synthetic data. The experimental findings validate the key idea that context is essential to the fusion process, and show that the proposed methods outperform commonly used fusion methods. Moreover, the results show that the proposed methods outperform score level fusion methods even at the decision level, showcasing the power of contextual learning. Finally, the second method proposed is shown to allow finer control for balancing accuracy and the number samples required for convergence.
URI: http://scholarbank.nus.edu.sg/handle/10635/138654
Appears in Collections:Master's Theses (Open)

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
SivasankaranD.pdf818.41 kBAdobe PDF

OPEN

NoneView/Download

Page view(s)

125
checked on Oct 18, 2018

Download(s)

32
checked on Oct 18, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.