Please use this identifier to cite or link to this item: https://doi.org/10.25540/15R9-T9Z7
Title: Dataset for "Towards Automated Related Work Summarization"
Creators: Hoang, C.D.V.
KAN MIN-YEN 
NUS Contact: KAN MIN-YEN
Subject: Automatic related work summarization
ReWoS
DOI: 10.25540/15R9-T9Z7
Description: 

Please ensure the following paper is cited appropriately when you reuse this dataset. For more details, please refer to Citation field.

We introduce the novel problem of automatic related work summarization. Given multiple articles (e.g., conference/journal papers) as input, a related work summarization system creates a topic-biased summary of related work specific to the target paper. Our prototype Related Work Summarization system, ReWoS, takes in set of keywords arranged in a hierarchical fashion that describes a target paper's topics, to drive the creation of an extractive summary using two different strategies for locating appropriate sentences for general topics as well as detailed ones. Our initial results show an improvement over generic multi-document summarization baselines in a human evaluation.

For details, please visit https://github.com/WING-NUS/RelatedWorkSummarizationDataset

Related Publications: 10635/41309
Citation: When using this data, please cite the original publication and also the dataset.
  • Cong Duy Vu Hoang and Min-Yen Kan (2010) Towards Automated Related Work Summarization. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), Beijing, China. pp. 427-435.
  • Hoang, C.D.V., KAN MIN-YEN (2017-11-13). Dataset for "Towards Automated Related Work Summarization". ScholarBank@NUS Repository. [Dataset]. https://doi.org/10.25540/15R9-T9Z7
License: Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
Appears in Collections:Staff Dataset

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
N09-1042.zip2.88 MBZIP

OPEN

NoneView/Download
P07-1034.zip1.14 MBZIP

OPEN

NoneView/Download
P08-1001.zip2.03 MBZIP

OPEN

NoneView/Download
P08-1006.zip2.05 MBZIP

OPEN

NoneView/Download
P08-1027.zip5.21 MBZIP

OPEN

NoneView/Download
P08-1032.zip4.92 MBZIP

OPEN

NoneView/Download
P08-1052.zip5.12 MBZIP

OPEN

NoneView/Download
p27-kalashnikov.zip9.55 MBZIP

OPEN

NoneView/Download
p79-raghavan.zip6.45 MBZIP

OPEN

NoneView/Download
p203-wu.zip3.36 MBZIP

OPEN

NoneView/Download
p343-ko.zip1.98 MBZIP

OPEN

NoneView/Download
Readme.doc1.32 MBMicrosoft Word

OPEN

NoneView/Download
RWSData_files.zip29.27 kBZIP

OPEN

NoneView/Download
C08-1013.zip2.75 MBZIP

OPEN

NoneView/Download
C08-1031.zip3.49 MBZIP

OPEN

NoneView/Download
C08-1064.zip3.15 MBZIP

OPEN

NoneView/Download
C08-1066.zip6.47 MBZIP

OPEN

NoneView/Download
DataStatistics.xls35.5 kBMicrosoft Excel

OPEN

NoneView/Download
E09-1018.zip4.12 MBZIP

OPEN

NoneView/Download
Logs.txt1.58 kBText

OPEN

NoneView/Download
N09-1008.zip1.06 MBZIP

OPEN

NoneView/Download
N09-1019.zip2.89 MBZIP

OPEN

NoneView/Download
N09-1027.zip1.25 MBZIP

OPEN

NoneView/Download
N09-1034.zip4.38 MBZIP

OPEN

NoneView/Download

Page view(s)

52
checked on Nov 20, 2017

Download(s)

20
checked on Nov 20, 2017

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons