Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/131609
Title: Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine
Authors: Zhou, J.
Chan, K.L.
Xu, P.
Chong, V.F.H. 
Issue Date: 2006
Source: Zhou, J., Chan, K.L., Xu, P., Chong, V.F.H. (2006). Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings 2006 : 1364-1367. ScholarBank@NUS Repository.
Abstract: A two-class support vector machine (SVM)-based image segmentation approach has been developed for the extraction of nasopharyngeal carcinoma (NPC) lesion from magnetic resonance (MR) images. By exploring two-class SVM, the developed method can learn the actual distribution of image data without prior knowledge and draw an optimal hyperplane for class separation, via an SVM parameters training procedure and an implicit kernel mapping. After learning, segmentation task is performed by the trained SVM classifier. The proposed technique is evaluated by 39 MR images with NPC and the results suggest that the proposed query-based approach provides an effective method for NPC extraction from MR images with high accuracy. © 2006 IEEE.
Source Title: 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
URI: http://scholarbank.nus.edu.sg/handle/10635/131609
ISBN: 0780395778
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

14
checked on Jan 21, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.