Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.cam.2003.09.026
Title: Grid approximation of a singularly perturbed boundary value problem modelling heat transfer in the case of flow over a flat plate with suction of the boundary layer
Authors: Miller, J.J.H. 
Shishkin, G.I.
Koren, B.
Shishkina, L.P.
Keywords: ε-uniform convergence
Boundary layers
Finite difference methods
Flow past a flat plate
Singularly perturbed parabolic equation
Two perturbation parameters
Issue Date: 1-Apr-2004
Source: Miller, J.J.H., Shishkin, G.I., Koren, B., Shishkina, L.P. (2004-04-01). Grid approximation of a singularly perturbed boundary value problem modelling heat transfer in the case of flow over a flat plate with suction of the boundary layer. Journal of Computational and Applied Mathematics 166 (1) : 221-232. ScholarBank@NUS Repository. https://doi.org/10.1016/j.cam.2003.09.026
Abstract: In the present paper we consider a boundary value problem on the semiaxis (0,∞) for a singularly perturbed parabolic equation with the two perturbation parameters ε 1 and ε 2 multiplying, respectively, the second and first derivatives with respect to the space variable. Depending on the relation between the parameters, the differential equation can be either of reaction-diffusion type or of convection-diffusion type. Correspondingly, the boundary layer can be either parabolic or regular. For this problem we consider the case when the boundary layer can be controlled by continuous suction of the fluid out of the boundary layer (model problems of this type appear in the mathematical modelling of heat transfer processes for flow past a flat plate). Errors in the approximations generated by standard numerical methods can be unsatisfactorily large for small values of the parameter ε 1. We construct a monotone finite difference scheme on piecewise uniform meshes which generates numerical solutions converging ε-uniformly with order O(N -1ln N+N 0 -1), where N 0 is the number of nodes in the time mesh and N is the number of meshpoints on a unit interval of the semiaxis in x. Although the solution of problem has a singularity only for ε 1→0, the character of the boundary layer depends essentially on the vector-valued parameter ε=(ε 1,ε 2). This prevents us from constructing an ε-uniformly convergent scheme having a transition parameter which is independent of the parameter ε 2. © 2003 Elsevier B.V. All rights reserved.
Source Title: Journal of Computational and Applied Mathematics
URI: http://scholarbank.nus.edu.sg/handle/10635/131436
ISSN: 03770427
DOI: 10.1016/j.cam.2003.09.026
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Apr 18, 2018

WEB OF SCIENCETM
Citations

3
checked on Apr 18, 2018

Page view(s)

12
checked on Apr 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.