Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.biomaterials.2012.10.035
DC FieldValue
dc.titleHigh content imaging in the screening of biomaterial-induced MSC behavior
dc.contributor.authorUnadkat, H.V.
dc.contributor.authorGroen, N.
dc.contributor.authorDoorn, J.
dc.contributor.authorFischer, B.
dc.contributor.authorBarradas, A.M.C.
dc.contributor.authorHulsman, M.
dc.contributor.authorvan de Peppel, J.
dc.contributor.authorMoroni, L.
dc.contributor.authorvan Leeuwen, J.P.
dc.contributor.authorReinders, M.J.T.
dc.contributor.authorvan Blitterswijk, C.A.
dc.contributor.authorde Boer, J.
dc.date.accessioned2016-10-18T06:27:20Z
dc.date.available2016-10-18T06:27:20Z
dc.date.issued2013-02
dc.identifier.citationUnadkat, H.V., Groen, N., Doorn, J., Fischer, B., Barradas, A.M.C., Hulsman, M., van de Peppel, J., Moroni, L., van Leeuwen, J.P., Reinders, M.J.T., van Blitterswijk, C.A., de Boer, J. (2013-02). High content imaging in the screening of biomaterial-induced MSC behavior. Biomaterials 34 (5) : 1498-1505. ScholarBank@NUS Repository. https://doi.org/10.1016/j.biomaterials.2012.10.035
dc.identifier.issn01429612
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/128525
dc.description.abstractUpon contact with a biomaterial, cells and surrounding tissues respond in a manner dictated by the physicochemical and mechanical properties of the material. Traditionally, cellular responses are monitored using invasive analytical methods that report the expression of genes or proteins. These analytical methods involve assessing commonly used markers for a predefined readout, masking the actual situation induced in the cells. Hence, a broader expression profile of the cellular response should be envisioned, which technically limits up scaling to higher throughput systems. However, it is increasingly recognized that morphometric readouts, obtained non-invasively, are related to gene expression patterns. Here, we introduced distinct surface roughness to three PLA surfaces, by exposure to oxygen plasma of different duration times. The response of mesenchymal stromal cells was compared to smooth untreated PLA surfaces without the addition of differentiation agents. Morphological and genome wide expression profiles revealed underlying cellular changes which was hidden for the commonly used gene markers for osteo-, chondro- and adipogenesis. Using 3 morphometric parameters, obtained by high content imaging, we were able to build a classifier and discriminate between oxygen plasma-induced modified sheets and non-modified PLA sheets where evaluating classical candidates missed this effect. This approach shows the feasibility to use noninvasive morphometric data in high-throughput systems to screen biomaterial surfaces indicating the underlying genetic biomaterial-induced changes. © 2012 Elsevier Ltd.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.biomaterials.2012.10.035
dc.sourceScopus
dc.subjectCell morphology
dc.subjectGene expression
dc.subjectMesenchymal stem cell
dc.subjectMolecular imaging
dc.subjectPolylactic acid
dc.subjectSurface roughness
dc.typeArticle
dc.contributor.departmentMECHANOBIOLOGY INSTITUTE
dc.description.doi10.1016/j.biomaterials.2012.10.035
dc.description.sourcetitleBiomaterials
dc.description.volume34
dc.description.issue5
dc.description.page1498-1505
dc.description.codenBIMAD
dc.identifier.isiut000313929400006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.