Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/116886
Title: Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphoryltion signalling pathways
Authors: Lim, L.
Manser, E. 
Leung, T. 
Hall, C.
Keywords: Mitogen-activated kinase pathways
Morphology
p21-activated kinase
Rho guanosine triphosphatase
Rho-binding kinase
Issue Date: 1996
Source: Lim, L.,Manser, E.,Leung, T.,Hall, C. (1996). Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphoryltion signalling pathways. European Journal of Biochemistry 242 (2) : 171-185. ScholarBank@NUS Repository.
Abstract: The oncogenic Ras p21 GTPases regulate phosphorylation pathways that underlie a wealth of activities, including growth and differentiation, in organisms ranging from yeast to human. In metazoa, growth factors trigger conversion of Ras from an inactive GDP-bound form to an active GTP-bound form. This activation of Ras leads to activation of Raf. Raf is one of the initial kinases in the cytoplasmic mitogen-activated protein kinase (MAPK) cascade, involving extracellular-signal-regulated kinases (ERK), which culminates in nuclear transcription. The Ras-related subfamily of Rho p21s, including Rho, Rac and Cdc42 are similarly active in their GTP-bound forms. These p21s mediate growth-factor-induced morphological changes involving actin-based cellular structures. For example, in mammalian fibroblasts, Rho mediates the formation of cytoskeletal stress fibres induced by lysophosphatidic acid, while Rac mediates the formation of membrane ruffles induced by platelet-derived growth factor, and Cdc42 mediates the formation of peripheral filopodia by bradykinin. In some cases, factor-induced. Rac activation results in Rho activation, and factor-induced Cdc42 activation leads to Rac activation, as determined by specific morphological changes. Although separate Cdc42/Rac and Rac/Rho hierarchies exist, these might not extend into a linear form (i.e. Cdc42→Rac→Rho) since Cdc42 and Rho activities may be competitive or even antagonistic. Thus Cdc42-mediated formation of filopodia is accompanied by loss of stress fibres (whose formation is mediated by Rho). Recently, mammalian kinases that bind to the GTP-bound forms of Rho p21s have been isolated. These kinases include the p21-activated serine/threonine kinase (PAK), which is stimulated by binding to Cdc42 and Rac, and the Rho-binding serine/threonine kinase (ROK), which is not as strongly stimulated by binding. These kinases act as effecters for their p21 partners since they can directly affect the reorganization of the relevant actin-containing structures. ROK promotes the formation of Rho-induced actin-containing stress fibres and focal-adhesion complexes, to which the ends of the stress fibres attach. PAK stimulates the disassembly of stress fibres, which has been shown to accompany formation of Cdc42-induced peripheral-actin-containing structures, including filopodia, which with Rac-induced membrane ruffles play a role in cell movement. PAK also fosters loss of focal-adhesion complexes. Thus, there is cooperation between different Rho p21s as well as antagonism, with their associated kinases having a role in the integration of the reorganization of the actin cytoskeleton. The similarity of PAK to the Saccharomyces cerevisiae kinase Ste20p, which initiates the yeast mating/pheromone MAPK cascade, led to experiments showing that Cdc42 regulates Ste20p in this MAPK pathway. This similarity has also led to the demonstration that mammalian Cdc42 and Rac can signal to the nucleus through MAPK pathways. However, c-Jun N-terminal kinase (JNK, stress-activated protein kinase) rather than ERK, is involved. PAK have been implicated in the JNK pathway, but their exact roles are uncertain. Thus members of the Rho subfamily, and kinases that bind to these p21s are intimately involved in immediate morphological processes as well as long-term transcriptional events.
Source Title: European Journal of Biochemistry
URI: http://scholarbank.nus.edu.sg/handle/10635/116886
ISSN: 00142956
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

47
checked on Feb 15, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.