Please use this identifier to cite or link to this item:
Title: Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling
Authors: Pan, C.Q. 
Sudol, M.
Sheetz, M. 
Low, B.C. 
Keywords: Cell signaling
Modular protein domains
Scaffold proteins
Issue Date: Nov-2012
Source: Pan, C.Q., Sudol, M., Sheetz, M., Low, B.C. (2012-11). Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cellular Signalling 24 (11) : 2143-2165. ScholarBank@NUS Repository.
Abstract: Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases. © 2012 Elsevier Inc.
Source Title: Cellular Signalling
ISSN: 08986568
DOI: 10.1016/j.cellsig.2012.06.002
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 27, 2018


checked on Feb 14, 2018

Page view(s)

checked on Mar 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.