Please use this identifier to cite or link to this item: https://doi.org/10.3389/fgene.2012.00104
Title: Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells
Authors: Lim, H.K.
Asharani, P.V. 
Hande, M.P.
Keywords: DNA damage and repair
DNA-PKcs
Genotoxicity
Silver nanoparticles
Issue Date: 2012
Source: Lim, H.K.,Asharani, P.V.,Hande, M.P. (2012). Enhanced genotoxicity of silver nanoparticles in DNA repair deficient mammalian cells. Frontiers in Genetics 3 (JUN) : -. ScholarBank@NUS Repository. https://doi.org/10.3389/fgene.2012.00104
Abstract: Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studies have shown that Ag-np exerts genotoxicity through double-strand breaks (DSBs). DNA-PKcs, the catalytic subunit of DNA dependent protein kinase, is an important caretaker of the genome which is known to be the main player mediating Non-homologous End-Joining (NHEJ) repair pathway. We hypothesize that DNA-PKcs is responsible for the repair of Ag-np induced DNA damage. In vitro studies have been carried out to investigate both cytotoxicity and genotoxicity induced by Ag-np in normal human cells, DNA-PKcs proficient, and deficient mammalian cells. Chemical inhibition of DNA-PKcs activity with NU7026, an ATP-competitive inhibitor of DNA-PKcs, has been performed to further validate the role of DNA-PKcs in this model. Our results suggest that Ag-np induced more prominent dose-dependent decrease in cell viability in DNA-PKcs deficient or inhibited cells. The deficiency or inhibition of DNA-PKcs renders the cells with higher susceptibility to DNA damage and genome instability which in turn contributed to greater cell cycle arrest/cell death. These findings support the fact that DNA-PKcs is involved in the repair of Ag-np induced genotoxicity and NHEJ repair pathway and DNA-PKcs particularly is activated to safeguard the genome upon Ag-np exposure. © 2012 Lim, Asharani and Hande.
Source Title: Frontiers in Genetics
URI: http://scholarbank.nus.edu.sg/handle/10635/116324
ISSN: 16648021
DOI: 10.3389/fgene.2012.00104
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

34
checked on Feb 21, 2018

Page view(s)

20
checked on Feb 17, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.