Please use this identifier to cite or link to this item: https://doi.org/10.1002/nme.4410
Title: A bubble-inspired algorithm for finite element mesh partitioning
Authors: Liu, P. 
Wang, C.-F. 
Keywords: Bubble
Finite element method
Mesh partitioning
Issue Date: 17-Feb-2013
Citation: Liu, P., Wang, C.-F. (2013-02-17). A bubble-inspired algorithm for finite element mesh partitioning. International Journal for Numerical Methods in Engineering 93 (7) : 770-794. ScholarBank@NUS Repository. https://doi.org/10.1002/nme.4410
Abstract: This paper presents a bubble-inspired algorithm for partitioning finite element mesh into subdomains. Differing from previous diffusion BUBBLE and Center-oriented Bubble methods, the newly proposed algorithm employs the physics of real bubbles, including nucleation, spherical growth, bubble-bubble collision, reaching critical state, and the final competing growth. The realization of foaming process of real bubbles in the algorithm enables us to create partitions with good shape without having to specify large number of artificial controls. The minimum edge cut is simply achieved by increasing the volume of each bubble in the most energy efficient way. Moreover, the order, in which an element is gathered into a bubble, delivers the minimum number of surface cells at every gathering step; thus, the optimal numbering of elements in each subdomain has naturally achieved. Because finite element solvers, such as multifrontal method, must loop over all elements in the local subdomain condensation phase and the global interface solution phase, these two features have a huge payback in terms of solver efficiency. Experiments have been conducted on various structured and unstructured meshes. The obtained results are consistently better than the classical kMetis library in terms of the edge cut, partition shape, and partition connectivity. © 2012 John Wiley & Sons, Ltd.
Source Title: International Journal for Numerical Methods in Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/116186
ISSN: 00295981
DOI: 10.1002/nme.4410
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Nov 11, 2018

WEB OF SCIENCETM
Citations

2
checked on Oct 23, 2018

Page view(s)

44
checked on Nov 2, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.