Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevA.81.012116
Title: Separable states and geometric phases of an interacting two-spin system
Authors: Niu, C.W.
Xu, G.F.
Liu, L.
Kang, L.
Tong, D.M.
Kwek, L.C. 
Issue Date: 2010
Citation: Niu, C.W., Xu, G.F., Liu, L., Kang, L., Tong, D.M., Kwek, L.C. (2010). Separable states and geometric phases of an interacting two-spin system. Physical Review A - Atomic, Molecular, and Optical Physics 81 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.81.012116
Abstract: It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this article, we illustrate this point by investigating a well-known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems. © 2010 The American Physical Society.
Source Title: Physical Review A - Atomic, Molecular, and Optical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/115928
ISSN: 10502947
DOI: 10.1103/PhysRevA.81.012116
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.