Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/114545
Title: Classification of ENT tissue using near-infrared Raman spectroscopy and support vector machines
Authors: Widjaja, E.
Zheng, W. 
Zhiwei, H. 
Keywords: Cancer diagnosis
ENT tissue
Linear discriminant analysis
Principal component analysis
Raman
Spectral classification
Support vector machines
Issue Date: 2005
Citation: Widjaja, E.,Zheng, W.,Zhiwei, H. (2005). Classification of ENT tissue using near-infrared Raman spectroscopy and support vector machines. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 5862 : 1-6. ScholarBank@NUS Repository.
Abstract: A recent developed pattern recognition algorithm, Support Vector Machines (SVM), was employed to classify near-infrared Raman spectroscopy data collected from normal and cancerous ENT tissues. Three types of classifiers, linear, 3rd order polynomial, and radial basis function, were used. Highest diagnostic accuracy was obtained by 3rd order polynomial with a sensitivity of 91.86% and a specificity of 100%. The possibility to simplify SVM implementation was also explored by using principal component analysis (PCA) to extract significant principal components. It was found that the first five principal components as the data inputs were already sufficient to produce sensitivities of 100% and specificities of 100% for all these three classifiers. Combination PCA and linear discriminant analysis (LDA) to classify these ENT data was also performed and analysis results show that both methods, combination PCA & SVM and PCA & LDA yielded comparable performance. © 2005 SPIE-OSA.
Source Title: Progress in Biomedical Optics and Imaging - Proceedings of SPIE
URI: http://scholarbank.nus.edu.sg/handle/10635/114545
ISSN: 16057422
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

71
checked on Oct 5, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.