Please use this identifier to cite or link to this item: https://doi.org/10.1074/jbc.M110.181073
Title: Down-regulation of Myc is essential for terminal erythroid maturation
Authors: Jayapal, S.R.
Lee, K.L. 
Ji, P.
Kaldis, P.
Lim, B.
Lodish, H.F.
Issue Date: 17-Dec-2010
Citation: Jayapal, S.R., Lee, K.L., Ji, P., Kaldis, P., Lim, B., Lodish, H.F. (2010-12-17). Down-regulation of Myc is essential for terminal erythroid maturation. Journal of Biological Chemistry 285 (51) : 40252-40265. ScholarBank@NUS Repository. https://doi.org/10.1074/jbc.M110.181073
Abstract: Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G1 phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G1-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
Source Title: Journal of Biological Chemistry
URI: http://scholarbank.nus.edu.sg/handle/10635/110733
ISSN: 00219258
DOI: 10.1074/jbc.M110.181073
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

36
checked on Dec 5, 2018

WEB OF SCIENCETM
Citations

34
checked on Dec 5, 2018

Page view(s)

48
checked on Nov 2, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.