Please use this identifier to cite or link to this item: https://doi.org/10.1093/toxsci/kfs240
Title: Autophagy is a cell self-protective mechanism against arsenic-induced cell transformation
Authors: Zhang, T.
Qi, Y.
Liao, M.
Xu, M.
Bower, K.A.
Frank, J.A.
Shen, H.-M. 
Luo, J.
Shi, X.
Chen, G.
Keywords: Arsenic
Autophagy
Oxidative stress
Transformation
Tumorigenesis
Issue Date: Dec-2012
Citation: Zhang, T., Qi, Y., Liao, M., Xu, M., Bower, K.A., Frank, J.A., Shen, H.-M., Luo, J., Shi, X., Chen, G. (2012-12). Autophagy is a cell self-protective mechanism against arsenic-induced cell transformation. Toxicological Sciences 130 (2) : 298-308. ScholarBank@NUS Repository. https://doi.org/10.1093/toxsci/kfs240
Abstract: Subchronic exposure to arsenic increases the incidence of human cancers such as skin, lung, colon, and rectal cancer. The mechanism for arsenic-induced tumorigenesis is still not clear. It is generally believed that DNA damage and genomic instability, generated by arsenic-promoted oxidative stress, account largely for this process. The major sources of reactive oxygen species (ROS) are arsenic-damaged mitochondria. Autophagy is a catabolic process functioning in turnover of long-lived proteins and dysfunctional organelles such as mitochondria. Defects of autophagy under stress conditions promote genomic instability and increase the risk of tumorigenesis. In the present study using a human bronchial epithelial cell line, BEAS-2B cells, we investigated the role of autophagy in arsenic-induced cell transformation, an important step in arsenic tumorigenesis. Our results show that subchronic arsenic exposure induces BEAS-2B cell transformation accompanied with increased ROS generation and autophagy activation. However, the patterns for ROS and autophagy alteration are different. Arsenic exposure generated a prolonged and steady increase of ROS levels, whereas the activation of autophagy, after an initial boost by arsenic administration, decreases in response to subchronic arsenic exposure, although the activity is still higher than a nontreated control. Further stimulation of autophagy increases mitochondria turnover and decreases ROS generation and arsenic-induced cell transformation. Contrarily, inhibition of autophagy activity decreases mitochondria turnover and enhances arsenic-induced ROS generation and cell transformation. In addition, the mammalian target of rapamycin signaling pathway is involved in arsenic-mediated autophagy activation. Our results suggest that autophagy is a cell self-protective mechanism against arsenic-induced cell transformation. © The Author 2012. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved.
Source Title: Toxicological Sciences
URI: http://scholarbank.nus.edu.sg/handle/10635/108877
ISSN: 10966080
DOI: 10.1093/toxsci/kfs240
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

42
checked on Jul 18, 2018

WEB OF SCIENCETM
Citations

34
checked on Jul 18, 2018

Page view(s)

44
checked on Jul 13, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.