Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0006-2952(03)00189-8
Title: Preclinical factors affecting the interindividual variability in the clearance of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid
Authors: Zhou, S. 
Kestell, P.
Baguley, B.C.
Paxton, J.W.
Keywords: CYP
DMXAA
Inhibition
Interindividual variation
UGT
Issue Date: 1-Jun-2003
Source: Zhou, S., Kestell, P., Baguley, B.C., Paxton, J.W. (2003-06-01). Preclinical factors affecting the interindividual variability in the clearance of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid. Biochemical Pharmacology 65 (11) : 1853-1865. ScholarBank@NUS Repository. https://doi.org/10.1016/S0006-2952(03)00189-8
Abstract: Cancer chemotherapy is characterized by significant interindividual variations in systemic clearance, therapeutic response, and toxicity. These variations are due mainly to genetic factors, leading to alterations in drug metabolism and/or target proteins. The aim of this study was to determine, using a human liver bank (N=14), the interindividual variations in the expression and activity of liver enzymes that metabolize the investigational anticancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), i.e cytochrome P450 (CYP1A2) and uridine diphosphate glucuronosyltransferase (UGT1A9/2B7). In addition, interindividual variations in enzyme inhibition, hydrolysis of DMXAA acyl glucuronide (DMXAA-G) by plasma and hepatic microsomes, and the binding of DMXAA by plasma proteins also were examined. The results indicated that there was approximately one order of magnitude of interindividual variation in the expression of CYP1A2 and UGT2B7, activity of the enzymes toward DMXAA, and inhibition potency (IC50) by diclofenac, cyproheptadine, and α-naphthoflavone. The enzyme activities toward DMXAA and IC50 values were closely correlated with enzyme expression. There was a smaller (2- to 3-fold) variation in the enzyme-catalyzed hydrolysis of DMXAA acyl glucuronide in human plasma and liver microsomes (N=6) and in the binding of DMXAA by plasma proteins in humans. In conclusion, the interindividual variability of DMXAA disposition observed in vitro might reflect the greater elimination variability (>one order of magnitude) in Phase I cancer patients. The variability in DMXAA clearance in these cancer patients would be due mainly to differences in its metabolism and its metabolic inhibition by co-administered drugs. To a lesser extent, variability in the clearance of DMXAA could be due to the hydrolysis of its acyl glucuronide and/or its binding to plasma proteins. Further study is needed to examine the genotype-phenotype relationship, and the result, together with therapeutic drug monitoring may provide a useful strategy for optimizing DMXAA treatment. © 2003 Elsevier Science Inc. All rights reserved.
Source Title: Biochemical Pharmacology
URI: http://scholarbank.nus.edu.sg/handle/10635/106236
ISSN: 00062952
DOI: 10.1016/S0006-2952(03)00189-8
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

7
checked on Feb 15, 2018

WEB OF SCIENCETM
Citations

7
checked on Feb 5, 2018

Page view(s)

26
checked on Feb 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.