Please use this identifier to cite or link to this item: https://doi.org/10.1021/pr8006232
Title: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS)
Authors: Chan, E.C.Y. 
Koh, P.K.
Mal, M.
Cheah, P.Y.
Eu, K.W.
Backshall, A.
Cavill, R.
Nicholson, J.K.
Keun, H.C.
Keywords: Chemometric
Colon
Colorectal cancer
GC/MS
HR-MAS NMR spectroscopy
Metabolic profiling
OPLS-DA
Rectum
Issue Date: Jan-2009
Citation: Chan, E.C.Y., Koh, P.K., Mal, M., Cheah, P.Y., Eu, K.W., Backshall, A., Cavill, R., Nicholson, J.K., Keun, H.C. (2009-01). Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). Journal of Proteome Research 8 (1) : 352-361. ScholarBank@NUS Repository. https://doi.org/10.1021/pr8006232
Abstract: Current clinical strategy for staging and prognostication of colorectal cancer (CRC) relies mainly upon the TNM or Duke system. This clinicopathological stage is a crude prognostic guide because it reflects in part the delay in diagnosis in the case of an advanced cancer and gives little insight into the biological characteristics of the tumor. We hypothesized that global metabolic profiling (metabonomics/metabolomics) of colon mucosae would define metabolic signatures that not only discriminate malignant from normal mucosae, but also could distinguish the anatomical and clinicopathological characteristics of CRC. We applied both high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) and gas chromatography mass spectrometry (GC/MS) to analyze metabolites in biopsied colorectal tumors and their matched normal mucosae obtained from 31 CRC patients. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models generated from metabolic profiles obtained by both analytical approaches could robustly discriminate normal from malignant samples (Q2 > 0.50, Receiver Operator Characteristic (ROC) AUC >0.95, using 7-fold cross validation). A total of 31 marker metabolites were identified using the two analytical platforms. The majority of these metabolites were associated with expected metabolic perturbations in CRC including elevated tissue hypoxia, glycolysis, nucleotide biosynthesis, lipid metabolism, inflammation and steroid metabolism. OPLS-DA models showed that the metabolite profiles obtained via HR-MAS NMR could further differentiate colon from rectal cancers (Q2> 0.60, ROC AUC = 1.00, using 7-fold cross validation). These data suggest that metabolic profiling of CRC mucosae could provide new phenotypic biomarkers for CRC management. © 2009 American Chemical Society.
Source Title: Journal of Proteome Research
URI: http://scholarbank.nus.edu.sg/handle/10635/106135
ISSN: 15353893
DOI: 10.1021/pr8006232
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

311
checked on Dec 12, 2018

WEB OF SCIENCETM
Citations

284
checked on Dec 12, 2018

Page view(s)

45
checked on Dec 7, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.