Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jedc.2009.04.007
Title: Option hedging theory under transaction costs
Authors: Lai, T.L.
Lim, T.W. 
Keywords: Backward induction
Optimal stopping
Option hedging
Singular stochastic control
Transaction costs
Volatility adjustment
Issue Date: Dec-2009
Citation: Lai, T.L., Lim, T.W. (2009-12). Option hedging theory under transaction costs. Journal of Economic Dynamics and Control 33 (12) : 1945-1961. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jedc.2009.04.007
Abstract: The problem of option hedging in the presence of proportional transaction costs can be formulated as a singular stochastic control problem. Hodges and Neuberger [1989. Optimal replication of contingent claims under transactions costs. Review of Futures Markets 8, 222-239] introduced an approach that is based on maximization of the expected utility of terminal wealth. We develop a new algorithm to solve the corresponding singular stochastic control problem and introduce a new approach to option hedging which is closer in spirit to the pathwise replication of Black and Scholes [1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637-654]. This new approach is based on minimization of a Black-Scholes-type measure of pathwise risk, defined in terms of a market delta, subject to an upper bound on the hedging cost. We provide an efficient backward induction algorithm for the problem of cost-constrained risk minimization, whose associated singular stochastic control problem is shown to be equivalent to an optimal stopping problem. This algorithm is then modified to solve the singular stochastic control problem associated with utility maximization, which cannot be reduced to an optimal stopping problem. We propose to choose an optimal parameter (risk-aversion coefficient or Lagrange multiplier) in either approach by minimizing the mean squared hedging error and demonstrate that with this "best" choice of the parameter, both approaches have similar performance. We also discuss the different notions of risk in both approaches and propose a volatility adjustment for the risk-minimization approach, which is analogous to that introduced by Zakamouline [2006. European option pricing and hedging with both fixed and proportional transaction costs. Journal of Economic Dynamics and Control 30, 1-25] for the utility maximization approach, thereby providing a unified treatment of both approaches. © 2009 Elsevier B.V. All rights reserved.
Source Title: Journal of Economic Dynamics and Control
URI: http://scholarbank.nus.edu.sg/handle/10635/105290
ISSN: 01651889
DOI: 10.1016/j.jedc.2009.04.007
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Dec 4, 2018

WEB OF SCIENCETM
Citations

3
checked on Dec 4, 2018

Page view(s)

53
checked on Aug 10, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.