Please use this identifier to cite or link to this item: https://doi.org/10.1088/0953-4075/33/3/304
Title: Solving quantum eigenvalue problems by discrete singular convolution
Authors: Wei, G.W. 
Issue Date: 14-Feb-2000
Citation: Wei, G.W. (2000-02-14). Solving quantum eigenvalue problems by discrete singular convolution. Journal of Physics B: Atomic, Molecular and Optical Physics 33 (3) : 343-352. ScholarBank@NUS Repository. https://doi.org/10.1088/0953-4075/33/3/304
Abstract: This paper explores the utility of a discrete singular convolution (DSC) algorithm for solving the Schrodinger equation. DSC kernels of Shannon, Dirichlet, modified Dirichlet and de la Vallee Poussin are selected to illustrate the present algorithm for obtaining eigenfunctions and eigenvalues. Four benchmark physical problems are employed to test numerical accuracy and speed of convergence of the present approach. Numerical results indicate that the present approach is efficient and reliable for solving the Schrodinger equation.
Source Title: Journal of Physics B: Atomic, Molecular and Optical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/104862
ISSN: 09534075
DOI: 10.1088/0953-4075/33/3/304
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

77
checked on Jun 17, 2018

WEB OF SCIENCETM
Citations

80
checked on May 23, 2018

Page view(s)

27
checked on Jun 8, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.