Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jcp.2006.04.019
Title: Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates
Authors: Bao, W. 
Chern, I.-L.
Lim, F.Y.
Keywords: Bose-Einstein condensation
Energy
First excited state
Gross-Pitaevskii equation
Ground state
Normalized gradient flow
Issue Date: 10-Dec-2006
Source: Bao, W., Chern, I.-L., Lim, F.Y. (2006-12-10). Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates. Journal of Computational Physics 219 (2) : 836-854. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jcp.2006.04.019
Abstract: In this paper, we present two efficient and spectrally accurate numerical methods for computing the ground and first excited states in Bose-Einstein condensates (BECs). We begin with a review on the gradient flow with discrete normalization (GFDN) for computing stationary states of a nonconvex minimization problem and show how to choose initial data effectively for the GFDN. For discretizing the gradient flow, we use sine-pseudospectral method for spatial derivatives and either backward Euler scheme (BESP) or backward/forward Euler schemes for linear/nonlinear terms (BFSP) for temporal derivatives. Both BESP and BFSP are spectral order accurate for computing the ground and first excited states in BEC. Of course, they have their own advantages: (i) for linear case, BESP is energy diminishing for any time step size where BFSP is energy diminishing under a constraint on the time step size; (ii) at every time step, the linear system in BFSP can be solved directly via fast sine transform (FST) and thus it is extremely efficient, and in BESP it needs to be solved iteratively via FST by introducing a stabilization term and thus it could be efficient too. Comparisons between BESP and BFSP as well as other existing numerical methods are reported in terms of accuracy and total computational time. Our numerical results show that both BESP and BFSP are much more accurate and efficient than those existing numerical methods in the literature. Finally our new numerical methods are applied to compute the ground and first excited states in BEC in one dimension (1D), 2D and 3D with a combined harmonic and optical lattice potential for demonstrating their efficiency and high resolution. © 2006 Elsevier Inc. All rights reserved.
Source Title: Journal of Computational Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/103179
ISSN: 00219991
DOI: 10.1016/j.jcp.2006.04.019
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

57
checked on Jan 16, 2018

WEB OF SCIENCETM
Citations

56
checked on Nov 19, 2017

Page view(s)

34
checked on Jan 13, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.