Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/103091
Title: Curvature of the L2-metric on the direct image of a family of Hermitian-Einstein vector bundles
Authors: To, W.-K. 
Weng, L.
Issue Date: Jun-1998
Citation: To, W.-K.,Weng, L. (1998-06). Curvature of the L2-metric on the direct image of a family of Hermitian-Einstein vector bundles. American Journal of Mathematics 120 (3) : 649-661. ScholarBank@NUS Repository.
Abstract: For a holomorphic family of simple Hermitian-Einstein holomorphic vector bundles over a compact Kähler manifold, the locally free part of the associated direct image sheaf over the parameter space forms a holomorphic vector bundle, and it is endowed with a Hermitian metric given by the L2 pairing using the Hermitian-Einstein metrics. Our main result in this paper is to compute the curvature of the L2-metric. In the case of a family of Hermitian holomorphic line bundles with fixed positive first Chern form and under certain curvature conditions, we show that the L2-metric is conformally equivalent to a Hermitian-Einstein metric. As applications, this proves the semi-stability of certain Picard bundles, and it leads to an alternative proof of a theorem of Kempf.
Source Title: American Journal of Mathematics
URI: http://scholarbank.nus.edu.sg/handle/10635/103091
ISSN: 00029327
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.